Show Summary Details

Page of

PRINTED FROM the OXFORD RESEARCH ENCYCLOPEDIA,  ENVIRONMENTAL SCIENCE (environmentalscience.oxfordre.com). (c) Oxford University Press USA, 2016. All Rights Reserved. Personal use only; commercial use is strictly prohibited (for details see Privacy Policy and Legal Notice).

date: 21 September 2018

Summary and Keywords

Surface irrigation is the oldest and most widely used irrigation method, more than 83% of the world’s irrigated area. It comprises traditional systems, developed over millennia, and modern systems with mechanized and often automated water application and adopting precise land-leveling. It adapts well to non-sloping conditions, low to medium soil infiltration characteristics, most crops, and crop mechanization as well as environmental conditions. Modern methods provide for water and energy saving, control of environmental impacts, labor saving, and cropping economic success, thus for competing with pressurized irrigation methods. Surface irrigation refers to a variety of gravity application of the irrigation water, which infiltrates into the soil while flowing over the field surface. The ways and timings of how water flows over the field and infiltrates the soil determine the irrigation phases—advance, maintenance or ponding, depletion, and recession—which vary with the irrigation method, namely paddy basin, leveled basin, border and furrow irrigation, generally used for field crops, and wild flooding and water spreading from contour ditches, used for pasture lands. System performance is commonly assessed using the distribution uniformity indicator, while management performance is assessed with the application efficiency or the beneficial water use fraction. The factors influencing system performance are multiple and interacting—inflow rate, field length and shape, soil hydraulics roughness, field slope, soil infiltration rate, and cutoff time—while management performance, in addition to these factors, depends upon the soil water deficit at time of irrigation, thus on the way farmers are able to manage irrigation. The process of surface irrigation is complex to describe because it combines surface flow with infiltration into the soil profile. Numerous mathematical computer models have therefore been developed for its simulation, aimed at both design adopting a target performance and field evaluation of actual performance. The use of models in design allows taking into consideration the factors referred to before and, when adopting any type of decision support system or multicriteria analysis, also taking into consideration economic and environmental constraints and issues.

There are various aspects favoring and limiting the adoption of surface irrigation. Favorable aspects include the simplicity of its adoption at farm in flat lands with low infiltration rates, namely when water conveyance and distribution are performed with canal and/or low-pressure pipe systems, low capital investment, and low energy consumption. Most significant limitations include high soil infiltration and high variability of infiltration throughout the field, land leveling requirements, need for control of a constant inflow rate, difficulties in matching irrigation time duration with soil water deficit at time of irrigation, and difficult access to equipment for mechanized and automated water application and distribution. The modernization of surface irrigation systems and design models, as well as models and tools usable to support surface irrigation management, have significantly impacted water use and productivity, and thus competitiveness of surface irrigation.

Keywords: design, economic environmental impacts, future issues, irrigation management, models, performance, surface irrigation methods, sustainability issues, water use, water saving

Access to the complete content on Oxford Research Encyclopedia of Environmental Science requires a subscription or purchase. Public users are able to search the site and view the abstracts and keywords for each book and chapter without a subscription. If you are a student or academic complete our librarian recommendation form to recommend the Oxford Research Encyclopedias to your librarians for an institutional free trial.

Please subscribe or login to access full text content.

If you have purchased a print title that contains an access token, please see the token for information about how to register your code.

For questions on access or troubleshooting, please check our FAQs, and if you can't find the answer there, please contact us.