Show Summary Details

Page of

PRINTED FROM the OXFORD RESEARCH ENCYCLOPEDIA,  ENVIRONMENTAL SCIENCE (environmentalscience.oxfordre.com). (c) Oxford University Press USA, 2016. All Rights Reserved. Personal use only; commercial use is strictly prohibited (for details see Privacy Policy and Legal Notice).

date: 18 July 2018

Summary and Keywords

Arid environments cover about one third of the Earth’s surface, comprising the most extensive of the terrestrial biomes. Deserts show considerable individual variation in climate, geomorphic surface expression, and biogeography. Climatically, deserts range from dry interior environments, with large temperature ranges, to humid and relatively cool coastal environments, with small temperature ranges. What all deserts share in common is a consistent deficit of precipitation relative to water loss by evaporation, implying that the biological availability of water is very low. Deserts develop because of climatic (persistent high-pressure cells), topographic (mountain ranges that cause rain shadow effects), and oceanographic (cold currents) factors that limit the amount of rain or snowfall that a region receives. Most global deserts are subtropical in distribution.

There is a large range of geomorphic surfaces, including sand sheets and sand seas (ergs), stone pavements, bedrock outcrops, dry lakebeds, and alluvial fans. Vegetation cover is generally sparse, but may be enhanced in areas of groundwater seepage or along river courses. The limited vegetation cover affects fluvial and slope processes and results in an enhanced role for the wind. While the majority of streams in deserts are ephemeral features, both intermittent and perennial rivers develop in response to snowmelt in nearby mountains or runoff from distant, more well-watered regions. Most drainage is endoreic, meaning that it flows internally into closed basins and does not reach the sea, being disposed of by seepage and evaporation.

The early study of deserts was largely descriptive. More process-based studies commenced with the study of North American deserts in the mid- to late-1800s. Since the late 20th century, research has expanded into many areas of the world, with notable contributions coming from China, but our knowledge of deserts is still more compete in regions such as North America, Australia, Israel, and southern Africa, where access and funding have been more consistently secure. The widespread availability of high-quality remotely sensed images has contributed to the spread of study into new global field areas. The temporal framework for research has also improved, benefiting from improvements in geochronological techniques. Geochronological controls are vital to desert research because most arid regions have experienced significant climatic changes. Deserts have not only expanded or contracted in size, but have experienced changes in the dominant geomorphic processes and biogeographic environment. Contemporary scientific work has also benefited from improvements in technology, notably in surveying techniques, and from the use of quantitative modeling.

Keywords: arid geomorphology, dunes, desertification, desert lakes, desert climates, desert hydrology, playas, aeolian erosion, aeolian processes

Access to the complete content on Oxford Research Encyclopedia of Environmental Science requires a subscription or purchase. Public users are able to search the site and view the abstracts and keywords for each book and chapter without a subscription.

Please subscribe or login to access full text content.

If you have purchased a print title that contains an access token, please see the token for information about how to register your code.

For questions on access or troubleshooting, please check our FAQs, and if you can''t find the answer there, please contact us.